В программе лояльности

Введение в перечислительную комбинаторику. Учебное пособие

Клековкин Геннадий Анатольевич

Код товара: 3002903
(0 оценок)Оценить
ОтзывНаписать отзыв
ВопросЗадать вопрос
1 / 25
Нет в наличии
Доставим в
г. Москва
Курьером
Л-Пост
бесплатно от 10 000 ₽
В пункт выдачи
от 155 ₽
бесплатно от 10 000 ₽
Точная стоимость доставки рассчитывается при оформлении заказа
Издательство:
Год издания:
2019
Редактор:
Наш комментарий:
Издание исправленное и дополненное.

Описание

Характеристики

В пособии рассмотрены классические перечислительные задачи на выбор и упорядочивание элементов конечного множества и задачи на разбиение конечных множеств и мультимножеств. Основные понятия, факты и методы перечислительной комбинаторики даны в объеме, позволяющем выпускнику вуза на высоком содержательном и методическом уровне разрабатывать и проводить элективные и факультативные курсы по комбинаторике в средней школе. Изложенный материал является также фундаментом для изучения «серьезной» учебной и монографической литературы по комбинаторике и ее приложениям.
Пособие предназначено для студентов высших учебных заведений, обучающихся по направлению «Педагогическое образование». Оно может быть использовано при преподавании раздела «Комбинаторика» в курсах дискретной математики, а также при разработке и постановке специальных курсов по выбору студентов, устанавливаемых вузом. В профильных школах отдельные разделы пособия могут служить основой элективных курсов по комбинаторике для учащихся 10-11 классов.
код в Майшоп
3002903
возрастная категория
18+ (нет данных)
издание
2
количество томов
1
количество страниц
228 стр.
размеры
206x136x13 мм
страна изготовления
Россия
наличие иллюстраций
рисунки
тип иллюстраций
чёрно-белые
формат
84x108/32 (130x200) мм
ISBN
978-5-8114-2759-8, 978-5-8114-4386-4
тип бумаги
офсетная (60-220 г/м2)
цвет
Белый
тираж
100
стандарт
1000 шт.
вес
286 г
область образования
статистика, теория вероятностей
тип материала
учебное пособие
язык
русский
переплёт
Твёрдый переплёт

Содержание

Предисловие
Глава 1. Основные комбинаторные конфигурации и
комбинаторные числа
§ 1.1. Вводные понятия
1.1.1. Комбинаторные конфигурации
1.1.2. Комбинаторные числа и способы их
вычисления
1.1.3. Комбинаторные схемы
§ 1.2. Основные правила комбинаторики
1.2.1. Правило суммы
1.2.2. Правило включения-исключения
1.2.3. Правило произведения
§ 1.3. Вычисление конечных сумм
1.3.1. Преобразования конечных сумм
1.3.2. Кратные суммы, произведения сумм
1.3.3. Методы вычисления конечных сумм
§ 1.4. Размещения и перестановки
1.4.1. Размещения
1.4.2. Перестановки
§ 1.5. Сочетания
1.5.1. Сочетания
1.5.2. Сочетания с повторениями
§ 1.6. Бином Ньютона
1.6.1. Вывод формулы
1.6.2. Свойства биномиальных коэффициентов
1.6.3. Треугольник Паскаля и его обобщения
1.6.4. Частный случай формулы
включения-исключения
§ 1.7. Полиномиальная формула
1.7.1. Вывод полиномиальной формулы
1.7.2. Свойства полиномиальных коэффициентов
§ 1.8. Формулы обращения
1.8.1. Теорема обращения
1.8.2. Биномиальное обращение
§ 1.9. Специальные целочисленные функции
1.9.1. Целочисленные округления
1 9.2. Число и сумма натуральных делителей.
Функция Эйлера
1.9.3. Функция Мебиуса
§ 1.10. Отображения и подстановки конечных
множеств
1.10.1. Число отображений конечных множеств
1.10.2. Перечисление подстановок
1.10.3. Задача о беспорядках
§ 1.11. Групповые методы в комбинаторике
1.11.1. Действие группы на множестве
1.11.2. Лемма Бернсайда
1.11.3. Задача об ожерельях I
§ 1.12. Разбиения множеств
1.12.1. Разбиенияиих виды
1.12.2. Упорядоченные разбиения
1.12.3. Неупорядоченные разбиения
§ 1.13. Разбиения чисел
1.13.1. Раскладки по различимым ящикам
1.13.2. Раскладки по неразличимым ящикам.
Диаграммы Ферре - Юнга
§ 1.14. Примеры разбиения мультимножеств
Глава 2. Метод рекуррентных соотношений
§ 2.1. Примеры задач, приводящих к рекуррентным
соотношениям
2.1.1. Задание комбинаторных чисел
рекуррентными соотношениями
2.1.2. Числа Фибоначчи
2.1.3. Сумма m-x степеней натуральных чисел
2.1.4. Анализ алгоритмов типа "разделяй и
властвуй"
§ 2.2. Рекурсия в задачах о разбиении чисел
2.2.1 Раскладка одинаковых предметов по
неразличимым ящикам
2.2.2 Разбиения чисел с ограничениями
§ 2.3. Числа Стирлинга
2.3.1 Числа Стирлинга первого рода
2.3.2 Числа Стирлинга второго рода. Числа Белла
§ 2.4. Рекуррентное соотношение как уравнение
2.4.1. Понятие решения рекуррентного
соотношения
2.4.2. Решение линейных рекуррентных
соотношений
§ 2.5. Линейные однородные рекуррентные
соотношения с постоянными коэффициентами
2.5.1. Основные теоремы
2.5.2. Характеристическое уравнение и вид общего
решения
§ 2.6. Линейные неоднородные рекуррентные
соотношения с постоянными коэффициентами
2.6.1. Основные теоремы и примеры
2.6.2. Рекуррентные соотношения и вычисление
конечных сумм
§ 2.7. Конечные разности
2.7.1. Операторы конечной разности и сдвига
2.7.2. Факториальные степени
2.7.3. Полиномиальные последовательности
2.7.4. Суммирование конечных разностей
Глава 3. Производящие функции
§ 3.1. Алгебра формальных степенных рядов
3.1.1. Идеи, приводящие к понятию производящей
функции
3.1.2. Алгебра Коши
3.1.3. Кольцо формальных степенных рядов
3.1.4. Подстановка ряда в ряд.
Дифференцирование и интегрирование
формальных степенных рядов
3.1.5. Алгебра Блиссара
§ 3.2. Производящие функции
3.2.1. Понятие производящей функции
3.2.2. Степенные производящие функции
3.2.3. Экспонента
3.2.4. Логарифм
§ 3.3. Приложения метода производящих функций
3.3.1. Доказательство биномиальных тождеств
3.3.2. Еще раз о биномиальном обращении
3.3.3. Решение рекуррентных соотношений
3.3.4. Числа Каталана
3.3.5. Числа Бернулли
§ 3.4. Производящие функции и выборки
3.4.1. Неупорядоченные выборки
3.4.2. Упорядоченные выборки
§ 3.5. Производящие функции и разбиения
множеств
§ 3.6. Производящие функции и разложения чисел
3.6.1. Разложения, в которых не учитывается
порядок слагаемых
3.6.2. Разложения, в которых учитывается
порядок слагаемых
§ 3.7. Теорема Пойа
3.7.1. Цикловой индекс группы
3.7.2. Производящая функция классов
эквивалентности
3.7.3. Задача об ожерельях II
Список использованной и рекомендуемой
литературы
Предметный указатель

Отзывы

Вопросы

Поделитесь своим мнением об этом товаре с другими покупателями — будьте первыми!

Дарим бонусы за отзывы!

За какие отзывы можно получить бонусы?
  • За уникальные, информативные отзывы, прошедшие модерацию
Как получить больше бонусов за отзыв?
  • Публикуйте фото или видео к отзыву
  • Пишите отзывы на товары с меткой "Бонусы за отзыв"
Правила начисления бонусов
Задайте вопрос, чтобы узнать больше о товаре
Если вы обнаружили ошибку в описании товара «Введение в перечислительную комбинаторику. Учебное пособие» (авторы: Клековкин Геннадий Анатольевич), то выделите её мышкой и нажмите Ctrl+Enter. Спасибо, что помогаете нам стать лучше!
Ваш населённый пункт:
г. Москва
Выбор населённого пункта